Spatiotemporal structure of Lyapunov vectors in chaotic coupled-map lattices.
نویسندگان
چکیده
The spatiotemporal dynamics of Lyapunov vectors (LVs) in spatially extended chaotic systems is studied by means of coupled-map lattices. We determine intrinsic length scales and spatiotemporal correlations of LVs corresponding to the leading unstable directions by translating the problem to the language of scale-invariant growing surfaces. We find that the so-called characteristic LVs exhibit spatial localization, strong clustering around given spatiotemporal loci, and remarkable dynamic scaling properties of the corresponding surfaces. In contrast, the commonly used backward LVs (obtained through Gram-Schmidt orthogonalization) spread all over the system and do not exhibit dynamic scaling due to artifacts in the dynamical correlations by construction.
منابع مشابه
Structure of characteristic Lyapunov vectors in spatiotemporal chaos.
We study Lyapunov vectors (LVs) corresponding to the largest Lyapunov exponents in systems with spatiotemporal chaos. We focus on characteristic LVs and compare the results with backward LVs obtained via successive Gram-Schmidt orthonormalizations. Systems of a very different nature such as coupled-map lattices and the (continuous-time) Lorenz '96 model exhibit the same features in quantitative...
متن کاملLyapunov spectrum and synchronization of piecewise linear map lattices with power-law coupling.
We study the synchronization properties of a lattice of chaotic piecewise linear maps. The coupling strength decreases with the lattice distance in a power-law fashion. We obtain the Lyapunov spectrum of the coupled map lattice and investigate the relation between spatiotemporal chaos and synchronization of amplitudes and phases, using suitable numerical diagnostics.
متن کاملA Comparison of Polynomial and Wavelet Expansions for the Identification of Chaotic Coupled Map Lattices
A comparison between polynomial and wavelet expansions for the identification of coupled map lattice (CML) models for deterministic spatio-temporal dynamical systems is presented in this paper. The pattern dynamics generated by smooth and non-smooth nonlinear maps in a well-known 2-dimensional CML structure are analysed. By using an orthogonal feedforward regression algorithm (OFR), polynomial ...
متن کامل3 v 1 9 S ep 1 99 6 Disturbance Propagation in Chaotic Extended Systems with Long - Range Coupling
Propagation of initially localized perturbations is investigated in chaotic coupled map lattices with long-range couplings decaying as a power of the distance. The initial perturbation propagates exponentially fast along the lattice, with a rate given by the ratio of the maximal Lyapunov exponent and the power of the coupling. A complementary description in terms of a suitable comoving Lyapunov...
متن کاملIntermediate-range Coupling Generates Low-dimensional Attractors Deeply in the Chaotic Region of 1-dimensional Lattices
Properties of intermediate-range coupling are studied in 1-dimensional coupled map lattices (CMLs). Phase diagrams have been constructed which describe the relationship between the range of coupling and coupling strength. A delicate low-dimensional attractor is emerging for non-global interactions in the case of weak coupling, while the leading Lyapunov exponent is a large positive number.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 76 2 Pt 2 شماره
صفحات -
تاریخ انتشار 2007